3.3 Identify, Constant, and Inverse Functions NOTES

Identity Function: a function whose output is identical to the input

$$f(x)=x$$
 or $y=x$ or $S(r)=r$

Constant Function: A function whose output values are the same for all elements of the functions domain

$$f(x) = 32$$
 or $y = 3$ or $g(x) = 7$

Ex 1: The family fun center has a special birthday offer for children under the age of 18. The birthday child gets the same number of game tokens as his or her age for free. Write a function to model this situation. Describe the type of function.

g(x): total coins
x: age (under 18)
$$g(x) = X \qquad Identity function$$

<u>Practice</u>: The atmospheric pressure at sea level is about 14.7 psi. Write a function to model the atmospheric pressure. Describe the type of function.

$$P(x) = 14.7$$
 Constant function

<u>Inverse Function</u>: if f maps an element a from its domain to an element b in its range, then f^{-1} maps back from b to a.

So, the domain of f is the range of f^{-1} the range of f is the domain of f^{-1}

*the graph of a function and its inverse will be symmetric across the line U=X

Ex 2: Find the inverse of $V = \frac{4}{3}\pi r^3$. Then use the inverse to approximate the radius of a soccer ball that has a volume of $8580 \ cm^3$.

<u>Practice:</u> Find the inverse of the function y=5x+1 TVU.

a)
$$g(x) = \sqrt[3]{x} - 3$$

 $y = \sqrt[3]{x} - 3$

b)
$$f(x) = \frac{7x+18}{2}$$

 $y = \frac{7x+18}{2}$

- (1) Flip x and y
- 2 solve for y
- (5) Rewrite Using inverse notation